1NL5

Engineered High-affinity Maltose-Binding Protein


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.290 
  • R-Value Work: 0.252 
  • R-Value Observed: 0.252 

wwPDB Validation   3D Report Full Report


This is version 2.2 of the entry. See complete history


Literature

Insights into the Conformational Equilibria of Maltose-binding Protein by Analysis of High Affinity Mutants.

Telmer, P.G.Shilton, B.H.

(2003) J Biol Chem 278: 34555-34567

  • DOI: https://doi.org/10.1074/jbc.M301004200
  • Primary Citation of Related Structures:  
    1N3W, 1N3X, 1NL5, 1PEB

  • PubMed Abstract: 

    The affinity of maltose-binding protein (MBP) for maltose and related carbohydrates was greatly increased by removal of groups in the interface opposite the ligand binding cleft. The wild-type protein has a KD of 1200 nM for maltose; mutation of residues Met-321 and Gln-325, both to alanine, resulted in a KD for maltose of 70 nM; deletion of 4 residues, Glu-172, Asn-173, Lys-175, and Tyr-176, which are part of a poorly ordered loop, results in a KD for maltose of 110 nM. Combining the mutations yields an increased affinity for maltodextrins and a KD of 6 nM for maltotriose. Comparison of ligand binding by the mutants, using surface plasmon resonance spectroscopy, indicates that decreases in the off-rate are responsible for the increased affinity. Small-angle x-ray scattering was used to demonstrate that the mutations do not significantly affect the solution conformation of MBP in either the presence or absence of maltose. The crystal structures of selected mutants showed that the mutations do not cause significant structural changes in either the closed or open conformation of MBP. These studies show that interactions in the interface opposite the ligand binding cleft, which we term the "balancing interface," are responsible for modulating the affinity of MBP for its ligand. Our results are consistent with a model in which the ligand-bound protein alternates between the closed and open conformations, and removal of interactions in the balancing interface decreases the stability of the open conformation, without affecting the closed conformation.


  • Organizational Affiliation

    Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Maltose-binding periplasmic protein366Escherichia coliMutation(s): 2 
Gene Names: MalE
UniProt
Find proteins for P0AEX9 (Escherichia coli (strain K12))
Explore P0AEX9 
Go to UniProtKB:  P0AEX9
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0AEX9
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose
B
2N/A
Glycosylation Resources
GlyTouCan:  G07411ON
GlyCosmos:  G07411ON
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download Ideal Coordinates CCD File 
C [auth A]ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
Biologically Interesting Molecules (External Reference) 1 Unique
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.290 
  • R-Value Work: 0.252 
  • R-Value Observed: 0.252 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 121.59α = 90
b = 121.59β = 90
c = 62.44γ = 90
Software Package:
Software NamePurpose
CNSrefinement
MAR345data collection
SCALEPACKdata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2003-08-12
    Type: Initial release
  • Version 1.1: 2008-04-29
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-10-11
    Changes: Refinement description
  • Version 1.4: 2018-01-31
    Changes: Experimental preparation
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Database references, Derived calculations, Non-polymer description, Structure summary
  • Version 2.1: 2021-10-27
    Changes: Database references, Structure summary
  • Version 2.2: 2023-08-16
    Changes: Data collection, Refinement description