3LC8

Crystal structure of the cytoplasmic tail of (pro)renin receptor as a MBP fusion (Maltose-free form)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.257 
  • R-Value Work: 0.195 
  • R-Value Observed: 0.197 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structural analysis of the intracellular domain of (pro)renin receptor fused to maltose-binding protein.

Zhang, Y.Gao, X.Michael Garavito, R.

(2011) Biochem Biophys Res Commun 407: 674-679

  • DOI: https://doi.org/10.1016/j.bbrc.2011.03.074
  • Primary Citation of Related Structures:  
    3LBS, 3LC8

  • PubMed Abstract: 

    The (pro)renin receptor (PRR) is an important component of the renin-angiotensin system (RAS), which regulates blood pressure and cardiovascular function. The integral membrane protein PRR contains a large extracellular domain (∼310 amino acids), a single transmembrane domain (∼20 amino acids) and an intracellular domain (∼19 amino acids). Although short, the intracellular (IC) domain of the PRR has functionally important roles in a number of signal transduction pathways activated by (pro)renin binding. Meanwhile, together with the transmembrane domain and a small portion of the extracellular domain (∼30 amino acids), the IC domain is also involved in assembly of V(0) portion of the vacuolar proton-translocating ATPase (V-ATPase). To better understand structural and multifunctional roles of the PRR-IC, we report the crystal structure of the PRR-IC domain as maltose-binding protein (MBP) fusion proteins at 2.0Å (maltose-free) and 2.15Å (maltose-bound). In the two separate crystal forms having significantly different unit-cell dimensions and molecular packing, MBP-PRR-IC fusion protein was found to be a dimer, which is different with the natural monomer of native MBP. The PRR-IC domain appears as a relatively flexible loop and is responsible for the dimerization of MBP fusion protein. Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermonomer interactions, suggesting a role for the PRR-IC domain in protein oligomerization.


  • Organizational Affiliation

    Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Maltose-binding periplasmic protein, Renin receptor
A, B
384Escherichia coliHomo sapiens
This entity is chimeric
Mutation(s): 0 
Gene Names: b4034JW3994malEATP6AP2ATP6IP2CAPERELDF10HT028MSTP009PSEC0072
UniProt & NIH Common Fund Data Resources
Find proteins for P0AEX9 (Escherichia coli (strain K12))
Explore P0AEX9 
Go to UniProtKB:  P0AEX9
Find proteins for O75787 (Homo sapiens)
Explore O75787 
Go to UniProtKB:  O75787
PHAROS:  O75787
GTEx:  ENSG00000182220 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupsP0AEX9O75787
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.257 
  • R-Value Work: 0.195 
  • R-Value Observed: 0.197 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 47.78α = 90
b = 112.7β = 90
c = 175.11γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
AMoREphasing
REFMACrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2011-02-16
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2017-08-09
    Changes: Refinement description, Source and taxonomy
  • Version 1.3: 2023-09-06
    Changes: Data collection, Database references, Derived calculations, Refinement description