5J7C

A picomolar affinity FN3 domain in complex with hen egg-white lysozyme


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.54 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.218 
  • R-Value Observed: 0.219 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Circumventing the stability-function trade-off in an engineered FN3 domain.

Porebski, B.T.Conroy, P.J.Drinkwater, N.Schofield, P.Vazquez-Lombardi, R.Hunter, M.R.Hoke, D.E.Christ, D.McGowan, S.Buckle, A.M.

(2016) Protein Eng Des Sel 

  • DOI: https://doi.org/10.1093/protein/gzw046
  • Primary Citation of Related Structures:  
    5J7C, 5J7K

  • PubMed Abstract: 

    The favorable biophysical attributes of non-antibody scaffolds make them attractive alternatives to monoclonal antibodies. However, due to the well-known stability-function trade-off, these gains tend to be marginal after functional selection. A notable example is the fibronectin Type III (FN3) domain, FNfn10, which has been previously evolved to bind lysozyme with 1 pM affinity (FNfn10-α-lys), but suffers from poor thermodynamic and kinetic stability. To explore this stability-function compromise further, we grafted the lysozyme-binding loops from FNfn10-α-lys onto our previously engineered, ultra-stable FN3 scaffold, FN3con. The resulting variant (FN3con-α-lys) bound lysozyme with a markedly reduced affinity, but retained high levels of thermal stability. The crystal structure of FNfn10-α-lys in complex with lysozyme revealed unanticipated interactions at the protein-protein interface involving framework residues of FNfn10-α-lys, thus explaining the failure to transfer binding via loop grafting. Utilizing this structural information, we redesigned FN3con-α-lys and restored picomolar binding affinity to lysozyme, while maintaining thermodynamic stability (with a thermal melting temperature 2-fold higher than that of FNfn10-α-lys). FN3con therefore provides an exceptional window of stability to tolerate deleterious mutations, resulting in a substantial advantage for functional design. This study emphasizes the utility of consensus design for the generation of highly stable scaffolds for downstream protein engineering studies.


  • Organizational Affiliation

    Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Lysozyme C
A, B
129Gallus gallusMutation(s): 0 
EC: 3.2.1.17
UniProt
Find proteins for P00698 (Gallus gallus)
Explore P00698 
Go to UniProtKB:  P00698
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00698
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
FNfn10-anti-lysozyme (DE0.4.1)
C, D
102Homo sapiensMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for P02751 (Homo sapiens)
Explore P02751 
Go to UniProtKB:  P02751
PHAROS:  P02751
GTEx:  ENSG00000115414 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP02751
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.54 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.218 
  • R-Value Observed: 0.219 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 54.858α = 90
b = 87.725β = 90
c = 100.895γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
iMOSFLMdata reduction
Aimlessdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2016-08-17
    Type: Initial release
  • Version 1.1: 2016-09-14
    Changes: Database references
  • Version 1.2: 2016-09-21
    Changes: Database references
  • Version 1.3: 2023-09-27
    Changes: Data collection, Database references, Derived calculations, Refinement description