6WP8

Proton-pumping mutant of Mastigocladopsis repens rhodopsin chloride pump


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.228 
  • R-Value Observed: 0.230 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants.

Besaw, J.E.Ou, W.L.Morizumi, T.Eger, B.T.Sanchez Vasquez, J.D.Chu, J.H.Y.Harris, A.Brown, L.S.Miller, R.J.D.Ernst, O.P.

(2020) J Biol Chem 295: 14793-14804

  • DOI: https://doi.org/10.1074/jbc.RA120.014118
  • Primary Citation of Related Structures:  
    6WP8, 6XL3

  • PubMed Abstract: 

    Microbial rhodopsins are versatile and ubiquitous retinal-binding proteins that function as light-driven ion pumps, light-gated ion channels, and photosensors, with potential utility as optogenetic tools for altering membrane potential in target cells. Insights from crystal structures have been central for understanding proton, sodium, and chloride transport mechanisms of microbial rhodopsins. Two of three known groups of anion pumps, the archaeal halorhodopsins (HRs) and bacterial chloride-pumping rhodopsins, have been structurally characterized. Here we report the structure of a representative of a recently discovered third group consisting of cyanobacterial chloride and sulfate ion-pumping rhodopsins, the Mastigocladopsis repens rhodopsin (MastR). Chloride-pumping MastR contains in its ion transport pathway a unique Thr-Ser-Asp (TSD) motif, which is involved in the binding of a chloride ion. The structure reveals that the chloride-binding mode is more similar to HRs than chloride-pumping rhodopsins, but the overall structure most closely resembles bacteriorhodopsin (BR), an archaeal proton pump. The MastR structure shows a trimer arrangement reminiscent of BR-like proton pumps and shows features at the extracellular side more similar to BR than the other chloride pumps. We further solved the structure of the MastR-T74D mutant, which contains a single amino acid replacement in the TSD motif. We provide insights into why this point mutation can convert the MastR chloride pump into a proton pump but cannot in HRs. Our study points at the importance of precise coordination and exact location of the water molecule in the active center of proton pumps, which serves as a bridge for the key proton transfer.


  • Organizational Affiliation

    Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Proton-pumping rhodopsin chloride pump240Mastigocladopsis repensMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
BOG
Query on BOG

Download Ideal Coordinates CCD File 
C [auth A]octyl beta-D-glucopyranoside
C14 H28 O6
HEGSGKPQLMEBJL-RKQHYHRCSA-N
RET
Query on RET

Download Ideal Coordinates CCD File 
B [auth A]RETINAL
C20 H28 O
NCYCYZXNIZJOKI-OVSJKPMPSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.228 
  • R-Value Observed: 0.230 
  • Space Group: P 3 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 103.741α = 90
b = 103.741β = 90
c = 55.213γ = 120
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
Aimlessdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Natural Sciences and Engineering Research Council (NSERC, Canada)Canada--

Revision History  (Full details and data files)

  • Version 1.0: 2020-07-29
    Type: Initial release
  • Version 1.1: 2020-08-12
    Changes: Database references, Structure summary
  • Version 1.2: 2020-11-11
    Changes: Database references
  • Version 1.3: 2023-10-18
    Changes: Data collection, Database references, Refinement description