This family includes: Ribosomal L7A from metazoa, Ribosomal L8-A and L8-B from fungi, 30S ribosomal protein HS6 from archaebacteria, 40S ribosomal protein S12 from eukaryotes, Ribosomal protein L30 from eukaryotes and archaebacteria. Gadd45 and MyD11 ...
This family includes: Ribosomal L7A from metazoa, Ribosomal L8-A and L8-B from fungi, 30S ribosomal protein HS6 from archaebacteria, 40S ribosomal protein S12 from eukaryotes, Ribosomal protein L30 from eukaryotes and archaebacteria. Gadd45 and MyD118 [1].
This family contains a central domain Pfam:PF00013, hence the amino and carboxyl terminal domains are stored separately. This is a minimal carboxyl-terminal domain. Some are much longer.
Superfamily includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. Structure of the domain is an alpha-antiparallel beta sandwich.
ABC transporters for a large family of proteins responsible for translocation of a variety of compounds across biological membranes. ABC transporters are the largest family of proteins in many completely sequenced bacteria. ABC transporters are comp ...
ABC transporters for a large family of proteins responsible for translocation of a variety of compounds across biological membranes. ABC transporters are the largest family of proteins in many completely sequenced bacteria. ABC transporters are composed of two copies of this domain and two copies of a transmembrane domain Pfam:PF00664. These four domains may belong to a single polypeptide as in Swiss:P13569, or belong in different polypeptide chains.
The S4 domain is a small domain consisting of 60-65 amino acid residues that was detected in the bacterial ribosomal protein S4, eukaryotic ribosomal S9, two families of pseudouridine synthases, a novel family of predicted RNA methylases, a yeast pro ...
The S4 domain is a small domain consisting of 60-65 amino acid residues that was detected in the bacterial ribosomal protein S4, eukaryotic ribosomal S9, two families of pseudouridine synthases, a novel family of predicted RNA methylases, a yeast protein containing a pseudouridine synthetase and a deaminase domain, bacterial tyrosyl-tRNA synthetases, and a number of uncharacterized, small proteins that may be involved in translation regulation [1]. The S4 domain probably mediates binding to RNA.
The S4 domain is a small domain consisting of 60-65 amino acid residues that was detected in the bacterial ribosomal protein S4, eukaryotic ribosomal S9, two families of pseudouridine synthases, a novel family of predicted RNA methylases, a yeast pro ...
The S4 domain is a small domain consisting of 60-65 amino acid residues that was detected in the bacterial ribosomal protein S4, eukaryotic ribosomal S9, two families of pseudouridine synthases, a novel family of predicted RNA methylases, a yeast protein containing a pseudouridine synthetase and a deaminase domain, bacterial tyrosyl-tRNA synthetases, and a number of uncharacterized, small proteins that may be involved in translation regulation [1]. The S4 domain probably mediates binding to RNA.
Small zinc finger protein HVO_2753-like, Zn-binding pocket
This domain is found in many archaeal proteins, including HVO_2753 (also known as Small CPxCG-related zinc finger protein) from Haloferax volcanii [1]. NMR 3D structure analysis revealed the content of four C(P)XCG motifs, suggesting the presence of ...
This domain is found in many archaeal proteins, including HVO_2753 (also known as Small CPxCG-related zinc finger protein) from Haloferax volcanii [1]. NMR 3D structure analysis revealed the content of four C(P)XCG motifs, suggesting the presence of two zinc-binding pockets (ZBPs). However, only C(P)XCG motifs 2 and 4 (comprising Cys-32 to Cys-35 and Cys-50 to Cys-53) form a ZBP and binds one zinc atom, while C(P)XCG motifs 1 and 3 (comprising Cys-12 to Cys-15 and Cys-39 to Cys-42) form a four-Cys cluster that do not bind zinc. The four C(P)XCG motifs are critical for protein stability, folding and functionality [1]. This domain can also be present in small zinc finger proteins from bacteria and eukaryotes.
This family of ribosomal proteins consists mainly of the 40S ribosomal protein S27a which is synthesised as a C-terminal extension of ubiquitin (CEP). The S27a domain compromises the C-terminal half of the protein. The synthesis of ribosomal proteins ...
This family of ribosomal proteins consists mainly of the 40S ribosomal protein S27a which is synthesised as a C-terminal extension of ubiquitin (CEP). The S27a domain compromises the C-terminal half of the protein. The synthesis of ribosomal proteins as extensions of ubiquitin promotes their incorporation into nascent ribosomes by a transient metabolic stabilisation and is required for efficient ribosome biogenesis [3]. The ribosomal extension protein S27a contains a basic region that is proposed to form a zinc finger; its fusion gene is proposed as a mechanism to maintain a fixed ratio between ubiquitin necessary for degrading proteins and ribosomes a source of proteins [2].
For questions/corrections to specific PDB entries, including citation updates: email deposit-help@mail.wwpdb.org
Thank you for providing your feedback! Someone will be in touch with you shortly. This window will automatically close in 5 seconds.
Apologies, our feedback server is currently unavailable and we are troubleshooting the issue. In the meantime, please copy and paste the below information into an email addressed to info@rcsb.org