Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein.
Gamble, T.R., Yoo, S., Vajdos, F.F., von Schwedler, U.K., Worthylake, D.K., Wang, H., McCutcheon, J.P., Sundquist, W.I., Hill, C.P.(1997) Science 278: 849-853
- PubMed: 9346481 
- DOI: https://doi.org/10.1126/science.278.5339.849
- Primary Citation of Related Structures:  
1A8O, 1AUM - PubMed Abstract: 
The carboxyl-terminal domain, residues 146 to 231, of the human immunodeficiency virus-1 (HIV-1) capsid protein [CA(146-231)] is required for capsid dimerization and viral assembly. This domain contains a stretch of 20 residues, called the major homology region (MHR), which is conserved across retroviruses and is essential for viral assembly, maturation, and infectivity. The crystal structures of CA(146-231) and CA(151-231) reveal that the globular domain is composed of four helices and an extended amino-terminal strand. CA(146-231) dimerizes through parallel packing of helix 2 across a dyad. The MHR is distinct from the dimer interface and instead forms an intricate hydrogen-bonding network that interconnects strand 1 and helices 1 and 2. Alignment of the CA(146-231) dimer with the crystal structure of the capsid amino-terminal domain provides a model for the intact protein and extends models for assembly of the central conical core of HIV-1.
Organizational Affiliation: 
Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA.