Three-dimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 A resolution: structural characterization of herbicide-conjugating plant glutathione S-transferases and a novel active site architecture.
Reinemer, P., Prade, L., Hof, P., Neuefeind, T., Huber, R., Zettl, R., Palme, K., Schell, J., Koelln, I., Bartunik, H.D., Bieseler, B.(1996) J Mol Biol 255: 289-309
- PubMed: 8551521 
- DOI: https://doi.org/10.1006/jmbi.1996.0024
- Primary Citation of Related Structures:  
1GNW - PubMed Abstract: 
Glutathione S-transferases (GST) are a family of multifunctional enzymes involved in the metabolization of a broad variety of xenobiotics and reactive endogenous compounds. The interest in plant glutathione S-transferases may be attributed to their agronomic value, since it has been demonstrated that glutathione conjugation for a variety of herbicides is the major resistance and selectivity factor in plants. The three-dimensional structure of glutathione S-transferase from the plant Arabidopsis thaliana has been solved by multiple isomorphous replacement and multiwavelength anomalous dispersion techniques at 3 A resolution and refined to a final crystallographic R-factor of 17.5% using data from 8 to 2.2 A resolution. The enzyme forms a dimer of two identical subunits each consisting of 211 residues. Each subunit is characterized by the GST-typical modular structure with two spatially distinct domains. Domain I consists of a central four-stranded beta-sheet flanked on one side by two alpha-helices and on the other side by an irregular segment containing three short 3(10)-helices, while domain II is entirely helical. The dimeric molecule is globular with a prominent large cavity formed between the two subunits. The active site is located in a cleft situated between domains I and II and each subunit binds two molecules of a competitive inhibitor S-hexylglutathione. Both hexyl moieties are oriented parallel and fill the H-subsite of the enzyme's active site. The glutathione peptide of one inhibitor, termed productive binding, occupies the G-subsite with multiple interactions similar to those observed for other glutathione S-transferases, while the glutathione backbone of the second inhibitor, termed unproductive binding, exhibits only weak interactions mediated by two polar contacts. A most striking difference from the mammalian glutathione S-transferases, which share a conserved catalytic tyrosine residue, is the lack of this tyrosine in the active site of the plant glutathione S-transferase.
Organizational Affiliation: 
Bayer AG, GB Pflanzenschutz (PF-F Biotechnologie) Pflanzenschutzzentrum Monheim, Leverkusen, Germany.