1SD1

STRUCTURE OF HUMAN 5'-DEOXY-5'-METHYLTHIOADENOSINE PHOSPHORYLASE COMPLEXED WITH FORMYCIN A


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.03 Å
  • R-Value Free: 0.198 
  • R-Value Work: 0.180 
  • R-Value Observed: 0.180 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Structural Comparison of MTA Phosphorylase and MTA/AdoHcy Nucleosidase Explains Substrate Preferences and Identifies Regions Exploitable for Inhibitor Design.

Lee, J.E.Settembre, E.C.Cornell, K.A.Riscoe, M.K.Sufrin, J.R.Ealick, S.E.Howell, P.L.

(2004) Biochemistry 43: 5159-5169

  • DOI: https://doi.org/10.1021/bi035492h
  • Primary Citation of Related Structures:  
    1SD1, 1SD2

  • PubMed Abstract: 

    The development of new and effective antiprotozoal drugs has been a difficult challenge because of the close similarity of the metabolic pathways between microbial and mammalian systems. 5'-Methylthioadenosine/S-adenosylhomocysteine (MTA/AdoHcy) nucleosidase is thought to be an ideal target for therapeutic drug design as the enzyme is present in many microbes but not in mammals. MTA/AdoHcy nucleosidase (MTAN) irreversibly depurinates MTA or AdoHcy to form adenine and the corresponding thioribose. The inhibition of MTAN leads to a buildup of toxic byproducts that affect various microbial pathways such as quorum sensing, biological methylation, polyamine biosynthesis, and methionine recycling. The design of nucleosidase-specific inhibitors is complicated by its structural similarity to the human MTA phosphorylase (MTAP). The crystal structures of human MTAP complexed with formycin A and 5'-methylthiotubercidin have been solved to 2.0 and 2.1 A resolution, respectively. Comparisons of the MTAP and MTAN inhibitor complexes reveal size and electrostatic potential differences in the purine, ribose, and 5'-alkylthio binding sites, which account for the substrate specificity and reactions catalyzed. In addition, the differences between the two enzymes have allowed the identification of exploitable regions that can be targeted for the development of high-affinity nucleosidase-specific inhibitors. Sequence alignments of Escherichia coli MTAN, human MTAP, and plant MTA nucleosidases also reveal potential structural changes to the 5'-alkylthio binding site that account for the substrate preference of plant MTA nucleosidases.


  • Organizational Affiliation

    Structural Biology and Biochemistry, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
5'-methylthioadenosine phosphorylase283Homo sapiensMutation(s): 0 
Gene Names: MTAPMSAP
EC: 2.4.2.28
UniProt & NIH Common Fund Data Resources
Find proteins for Q13126 (Homo sapiens)
Explore Q13126 
Go to UniProtKB:  Q13126
PHAROS:  Q13126
GTEx:  ENSG00000099810 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ13126
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
FMC
Query on FMC

Download Ideal Coordinates CCD File 
B [auth A](1S)-1-(7-amino-1H-pyrazolo[4,3-d]pyrimidin-3-yl)-1,4-anhydro-D-ribitol
C10 H13 N5 O4
KBHMEHLJSZMEMI-KSYZLYKTSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.03 Å
  • R-Value Free: 0.198 
  • R-Value Work: 0.180 
  • R-Value Observed: 0.180 
  • Space Group: P 3 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 121α = 90
b = 121β = 90
c = 44.2γ = 120
Software Package:
Software NamePurpose
MAR345data collection
SCALEPACKdata scaling
CNSrefinement
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-05-18
    Type: Initial release
  • Version 1.1: 2008-04-29
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Derived calculations, Version format compliance
  • Version 1.3: 2017-10-11
    Changes: Refinement description
  • Version 1.4: 2024-02-14
    Changes: Data collection, Database references, Derived calculations