4HGC

Crystal structure of bovine trypsin complexed with sfti-1 analog containing a peptoid residue at position p1


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.29 Å
  • R-Value Free: 0.157 
  • R-Value Work: 0.126 
  • R-Value Observed: 0.127 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 2.0 of the entry. See complete history


Literature

Structure of a proteolytically resistant analogue of (NLys)(5)SFTI-1 in complex with trypsin: evidence for the direct participation of the Ser214 carbonyl group in serine protease-mediated proteolysis.

Krzywda, S.Jaskolski, M.Rolka, K.Stawikowski, M.J.

(2014) Acta Crystallogr D Biol Crystallogr 70: 668-675

  • DOI: https://doi.org/10.1107/S1399004713032252
  • Primary Citation of Related Structures:  
    4HGC

  • PubMed Abstract: 

    Peptide-peptoid hybrids are found to be potent inhibitors of serine proteases. These engineered peptidomimetics benefit from both types of units of the biopolymeric structure: the natural inhibitor part serves as a good binding template, while the P1-positioned peptoid component provides complete resistance towards proteolysis. In this report, the mechanism of proteolytic resistance of a P1 peptoid-containing analogue is postulated based on the crystal structure of the (NLys)(5)-modified sunflower trypsin inhibitor SFTI-1 in complex with bovine trypsin solved at 1.29 Å resolution. The structural differences between the (NLys)(5)SFTI-1-trypsin complex and the native SFTI-1-trypsin complex are surprisingly small and reveal the key role of the carbonyl group of the Ser214 residue of the enzyme, which is crucial for binding of the inhibitor and plays a crucial role in proteolysis mediated by serine proteases. The incorporated NLys5 peptoid residue prevents Ser214 from forming a hydrogen bond to the P1 residue, and in turn Gln192 does not form a hydrogen bond to the carbonyl group of the P2 residue. It also increases the distance between the Ser214 carbonyl group and the Ser195 residue, thus preventing proteolysis. The hybrid inhibitor structure reported here provides insight into protein-protein interaction, which can be efficiently and selectively probed with the use of peptoids incorporated within endogenous peptide ligands.


  • Organizational Affiliation

    Department of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Cationic trypsin223Bos taurusMutation(s): 0 
EC: 3.4.21.4
UniProt
Find proteins for P00760 (Bos taurus)
Explore P00760 
Go to UniProtKB:  P00760
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00760
Sequence Annotations
Expand
  • Reference Sequence

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Trypsin inhibitor 1B [auth I]14Helianthus annuusMutation(s): 1 
UniProt
Find proteins for Q4GWU5 (Helianthus annuus)
Explore Q4GWU5 
Go to UniProtKB:  Q4GWU5
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ4GWU5
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download Ideal Coordinates CCD File 
I [auth A],
J [auth A],
K [auth A]
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
GOL
Query on GOL

Download Ideal Coordinates CCD File 
D [auth A],
E [auth A],
F [auth A],
G [auth A],
H [auth A]
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
CA
Query on CA

Download Ideal Coordinates CCD File 
C [auth A]CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
NLY
Query on NLY
B [auth I]PEPTIDE LINKINGC6 H14 N2 O2GLY
Biologically Interesting Molecules (External Reference) 1 Unique
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.29 Å
  • R-Value Free: 0.157 
  • R-Value Work: 0.126 
  • R-Value Observed: 0.127 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 60.12α = 90
b = 64.14β = 90
c = 70.04γ = 90
Software Package:
Software NamePurpose
MAR345data collection
MOLREPphasing
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2013-10-09
    Type: Initial release
  • Version 1.1: 2014-03-12
    Changes: Database references
  • Version 1.2: 2014-03-26
    Changes: Database references
  • Version 1.3: 2017-11-15
    Changes: Advisory, Refinement description
  • Version 1.4: 2023-09-20
    Changes: Advisory, Data collection, Database references, Derived calculations, Refinement description
  • Version 2.0: 2023-11-15
    Changes: Atomic model, Data collection, Derived calculations