4XHF

Crystal structure of Shewanella oneidensis NqrC


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.76 Å
  • R-Value Free: 
    0.202 (Depositor), 0.204 (DCC) 
  • R-Value Work: 
    0.166 (Depositor), 0.166 (DCC) 
  • R-Value Observed: 
    0.168 (Depositor) 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 

Created with Raphaël 2.3.0Worse 01 BetterLigand structure goodness of fit to experimental dataBest fitted FMNClick on this verticalbar to view details

This is version 1.2 of the entry. See complete history


Literature

Molecular insights into the enzymatic diversity of flavin-trafficking protein (Ftp; formerly ApbE) in flavoprotein biogenesis in the bacterial periplasm.

Deka, R.K.Brautigam, C.A.Liu, W.Z.Tomchick, D.R.Norgard, M.V.

(2016) Microbiologyopen 5: 21-38

  • DOI: https://doi.org/10.1002/mbo3.306
  • Primary Citation of Related Structures:  
    4XGV, 4XGW, 4XGX, 4XHF

  • PubMed Abstract: 

    We recently reported a flavin-trafficking protein (Ftp) in the syphilis spirochete Treponema pallidum (Ftp_Tp) as the first bacterial metal-dependent FAD pyrophosphatase that hydrolyzes FAD into AMP and FMN in the periplasm. Orthologs of Ftp_Tp in other bacteria (formerly ApbE) appear to lack this hydrolytic activity; rather, they flavinylate the redox subunit, NqrC, via their metal-dependent FMN transferase activity. However, nothing has been known about the nature or mechanism of metal-dependent Ftp catalysis in either Nqr- or Rnf-redox-containing bacteria. In the current study, we identified a bimetal center in the crystal structure of Escherichia coli Ftp (Ftp_Ec) and show via mutagenesis that a single amino acid substitution converts it from an FAD-binding protein to a Mg(2+)-dependent FAD pyrophosphatase (Ftp_Tp-like). Furthermore, in the presence of protein substrates, both types of Ftps are capable of flavinylating periplasmic redox-carrying proteins (e.g., RnfG_Ec) via the metal-dependent covalent attachment of FMN. A high-resolution structure of the Ftp-mediated flavinylated protein of Shewanella oneidensis NqrC identified an essential lysine in phosphoester-threonyl-FMN bond formation in the posttranslationally modified flavoproteins. Together, these discoveries broaden our understanding of the physiological capabilities of the bacterial periplasm, and they also clarify a possible mechanism by which flavoproteins are generated.


  • Organizational Affiliation

    Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Na-translocating NADH-quinone reductase subunit C NqrC
A, B, C, D
260Shewanella oneidensis MR-1Mutation(s): 0 
Gene Names: nqrCSO_0904
EC: 1.6.5 (PDB Primary Data), 7.2.1.1 (UniProt)
UniProt
Find proteins for Q8EID8 (Shewanella oneidensis (strain ATCC 700550 / JCM 31522 / CIP 106686 / LMG 19005 / NCIMB 14063 / MR-1))
Explore Q8EID8 
Go to UniProtKB:  Q8EID8
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8EID8
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.76 Å
  • R-Value Free:  0.202 (Depositor), 0.204 (DCC) 
  • R-Value Work:  0.166 (Depositor), 0.166 (DCC) 
  • R-Value Observed: 0.168 (Depositor) 
Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 70.914α = 90
b = 93.476β = 100.24
c = 71.139γ = 90
Software Package:
Software NamePurpose
HKL-3000data reduction
PHENIXrefinement
PDB_EXTRACTdata extraction
HKL-3000data scaling
PHENIXphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 

Created with Raphaël 2.3.0Worse 01 BetterLigand structure goodness of fit to experimental dataBest fitted FMNClick on this verticalbar to view details

Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2015-12-16
    Type: Initial release
  • Version 1.1: 2016-03-16
    Changes: Database references
  • Version 1.2: 2024-11-20
    Changes: Data collection, Database references, Derived calculations, Structure summary