The respiratory chain complexes I, III and IV (CI, CIII and CIV) are present in the bacterial membrane or the inner mitochondrial membrane and have a role of transferring electrons and establishing the proton gradient for ATP synthesis by complex V. The respiratory chain complexes can assemble into supercomplexes (SCs), but their precise arrangement is unknown. Here we report a 5.4 Å cryo-electron microscopy structure of the major 1.7 megadalton SCI1III2IV1 respirasome purified from porcine heart. The CIII dimer and CIV bind at the same side of the L-shaped CI, with their transmembrane domains essentially aligned to form a transmembrane disk. Compared to free CI, the CI in the respirasome is more compact because of interactions with CIII and CIV. The NDUFA11 and NDUFB9 supernumerary subunits of CI contribute to the oligomerization of CI and CIII. The structure of the respirasome provides information on the precise arrangements of the respiratory chain complexes in mitochondria.
Organizational Affiliation:
Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
For questions/corrections to specific PDB entries, including citation updates: email deposit-help@mail.wwpdb.org
Thank you for providing your feedback! Someone will be in touch with you shortly. This window will automatically close in 5 seconds.
Apologies, our feedback server is currently unavailable and we are troubleshooting the issue. In the meantime, please copy and paste the below information into an email addressed to info@rcsb.org