This domain represents the N-terminal of NAD(P)H-quinone oxidoreductase subunit 2 (or subunit B), part of the P-module (pumping) of the photosynthetic complex I from plants and cyanobacteria, which is structurally and functionally related to the resp ...
This domain represents the N-terminal of NAD(P)H-quinone oxidoreductase subunit 2 (or subunit B), part of the P-module (pumping) of the photosynthetic complex I from plants and cyanobacteria, which is structurally and functionally related to the respiratory complex I from mitochondria and bacteria. It is involved in the electron transfer between photosynthetic complex I and photosystem I [1].
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associa ...
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane, and in this context is a combination predominantly of subunits 2, 4, 5, 14, L, M and N [1]. In many bacterial species these proteins are probable stand-alone transporters not coupled with oxidoreduction [2].
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associa ...
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane, and in this context is a combination predominantly of subunits 2, 4, 5, 14, L, M and N [1]. In many bacterial species these proteins are probable stand-alone transporters not coupled with oxidoreduction [2].
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associa ...
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane, and in this context is a combination predominantly of subunits 2, 4, 5, 14, L, M and N [1]. In many bacterial species these proteins are probable stand-alone transporters not coupled with oxidoreduction [2].
This entry represents a carboxyl terminal extension of Pfam:PF00361. It includes subunit 5 from chloroplasts, and bacterial subunit L. This sub-family is part of complex I which catalyses the transfer of two electrons from NADH to ubiquinone in a re ...
This entry represents a carboxyl terminal extension of Pfam:PF00361. It includes subunit 5 from chloroplasts, and bacterial subunit L. This sub-family is part of complex I which catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane. This family is largely a few TM regions of the F subunit of NADH-Ubiquinone oxidoreductase from plants. The TMs form part of the anti-porter subunit.
This entry represents an amino terminal extension of Pfam:PF00361. Only NADH-Ubiquinone chain 5 and eubacterial chain L are in this family. This sub-family is part of complex I which catalyses the transfer of two electrons from NADH to ubiquinone in ...
This entry represents an amino terminal extension of Pfam:PF00361. Only NADH-Ubiquinone chain 5 and eubacterial chain L are in this family. This sub-family is part of complex I which catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane.
Superfamily includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. Structure of the domain is an alpha-antiparallel beta sandwich. Domain contai ...
Superfamily includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. Structure of the domain is an alpha-antiparallel beta sandwich. Domain contains two 4Fe4S clusters.