1AM4

COMPLEX BETWEEN CDC42HS.GMPPNP AND P50 RHOGAP (H. SAPIENS)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.70 Å
  • R-Value Free: 0.280 
  • R-Value Work: 0.230 

Starting Models: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP.

Rittinger, K.Walker, P.A.Eccleston, J.F.Nurmahomed, K.Owen, D.Laue, E.Gamblin, S.J.Smerdon, S.J.

(1997) Nature 388: 693-697

  • DOI: https://doi.org/10.1038/41805
  • Primary Citation of Related Structures:  
    1AM4

  • PubMed Abstract: 

    Small G proteins transduce signals from plasma-membrane receptors to control a wide range of cellular functions. These proteins are clustered into distinct families but all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of G proteins, which includes Cdc42Hs, activate effectors involved in the regulation of cytoskeleton formation, cell proliferation and the JNK signalling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GTPase-activating proteins (GAPs) that enhance the rate of GTP hydrolysis by up to 10(5) times. We report here the crystal structure of Cdc42Hs, with the non-hydrolysable GTP analogue GMPPNP, in complex with the GAP domain of p50rhoGAP at 2.7A resolution. In the complex Cdc42Hs interacts, mainly through its switch I and II regions, with a shallow pocket on rhoGAP which is lined with conserved residues. Arg 85 of rhoGAP interacts with the P-loop of Cdc42Hs, but from biochemical data and by analogy with the G-protein subunit G(i alpha1), we propose that it adopts a different conformation during the catalytic cycle which enables it to stabilize the transition state of the GTP-hydrolysis reaction.


  • Organizational Affiliation

    National Institute for Medical Research, London, UK.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
P50-RHOGAPA,
C [auth B],
E [auth C]
199Homo sapiensMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for Q07960 (Homo sapiens)
Explore Q07960 
Go to UniProtKB:  Q07960
PHAROS:  Q07960
GTEx:  ENSG00000175220 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ07960
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
CDC42HSB [auth D],
D [auth E],
F
177Homo sapiensMutation(s): 0 
EC: 3.6.5.2
UniProt & NIH Common Fund Data Resources
Find proteins for P60953 (Homo sapiens)
Explore P60953 
Go to UniProtKB:  P60953
PHAROS:  P60953
GTEx:  ENSG00000070831 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP60953
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.70 Å
  • R-Value Free: 0.280 
  • R-Value Work: 0.230 
  • Space Group: P 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 78.11α = 90.01
b = 78.12β = 90
c = 78.1γ = 90.05
Software Package:
Software NamePurpose
AMoREphasing
CCP4refinement
DENZOdata reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-07-15
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-02
    Changes: Database references, Derived calculations, Refinement description
  • Version 1.4: 2024-05-22
    Changes: Data collection