1BX4

STRUCTURE OF HUMAN ADENOSINE KINASE AT 1.50 ANGSTROMS


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.226 
  • R-Value Work: 0.192 
  • R-Value Observed: 0.192 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Structure of human adenosine kinase at 1.5 A resolution.

Mathews, I.I.Erion, M.D.Ealick, S.E.

(1998) Biochemistry 37: 15607-15620

  • DOI: https://doi.org/10.1021/bi9815445
  • Primary Citation of Related Structures:  
    1BX4

  • PubMed Abstract: 

    Adenosine kinase (AK) is a key enzyme in the regulation of extracellular adenosine and intracellular adenylate levels. Inhibitors of adenosine kinase elevate adenosine to levels that activate nearby adenosine receptors and produce a wide variety of therapeutically beneficial activities. Accordingly, AK is a promising target for new analgesic, neuroprotective, and cardioprotective agents. We determined the structure of human adenosine kinase by X-ray crystallography using MAD phasing techniques and refined the structure to 1.5 A resolution. The enzyme structure consisted of one large alpha/beta domain with nine beta-strands, eight alpha-helices, and one small alpha/beta-domain with five beta-strands and two alpha-helices. The active site is formed along the edge of the beta-sheet in the large domain while the small domain acts as a lid to cover the upper face of the active site. The overall structure is similar to the recently reported structure of ribokinase from Escherichia coli [Sigrell et al. (1998) Structure 6, 183-193]. The structure of ribokinase was determined at 1.8 A resolution and represents the first structure of a new family of carbohydrate kinases. Two molecules of adenosine were present in the AK crystal structure with one adenosine molecule located in a site that matches the ribose site in ribokinase and probably represents the substrate-binding site. The second adenosine site overlaps the ADP site in ribokinase and probably represents the ATP site. A Mg2+ ion binding site is observed in a trough between the two adenosine sites. The structure of the active site is consistent with the observed substrate specificity. The active-site model suggests that Asp300 is an important catalytic residue involved in the deprotonation of the 5'-hydroxyl during the phosphate transfer.


  • Organizational Affiliation

    Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PROTEIN (ADENOSINE KINASE)345Homo sapiensMutation(s): 0 
EC: 2.7.1.20
UniProt & NIH Common Fund Data Resources
Find proteins for P55263 (Homo sapiens)
Go to UniProtKB:  P55263
PHAROS:  P55263
GTEx:  ENSG00000156110 
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.226 
  • R-Value Work: 0.192 
  • R-Value Observed: 0.192 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 65.3α = 90
b = 111.08β = 90
c = 49.69γ = 90
Software Package:
Software NamePurpose
SnBphasing
SOLVEphasing
X-PLORrefinement
MOSFLMdata reduction
CCP4data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1999-10-13
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-10-04
    Changes: Refinement description
  • Version 1.4: 2023-12-27
    Changes: Data collection, Database references, Derived calculations