Crystal structure of the potent natural product inhibitor balanol in complex with the catalytic subunit of cAMP-dependent protein kinase.
Narayana, N., Diller, T.C., Koide, K., Bunnage, M.E., Nicolaou, K.C., Brunton, L.L., Xuong, N.H., Ten Eyck, L.F., Taylor, S.S.(1999) Biochemistry 38: 2367-2376
- PubMed: 10029530 
- DOI: https://doi.org/10.1021/bi9820659
- Primary Citation of Related Structures:  
1BX6 - PubMed Abstract: 
Endogenous protein kinase inhibitors are essential for a wide range of physiological functions. These endogenous inhibitors may mimic peptide substrates as in the case of the heat-stable protein kinase inhibitor (PKI), or they may mimic nucleotide triphosphates. Natural product inhibitors, endogenous to the unique organisms producing them, can be potent exogenous inhibitors against foreign protein kinases. Balanol is a natural product inhibitor exhibiting low nanomolar Ki values against serine and threonine specific kinases, while being ineffective against protein tyrosine kinases. To elucidate balanol's specific inhibitory effects and provide a basis for understanding inhibition-regulated biological processes, a 2.1 A resolution crystal structure of balanol in complex with cAMP-dependent protein kinase (cAPK) was determined. The structure reveals conserved binding regions and displays extensive complementary interactions between balanol and conserved cAPK residues. This report describes the structure of a protein kinase crystallized with a natural ATP mimetic in the absence of metal ions and peptide inhibitor.
Organizational Affiliation: 
The Howard Hughes Medical Institute, Department of Biology, University of California, San Diego, La Jolla, USA.