1EAZ

Crystal structure of the phosphoinositol (3,4)-bisphosphate binding PH domain of TAPP1 from human.


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.228 
  • R-Value Observed: 0.171 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Crystal Structure of the Phosphatidylinositol 3,4-Bisphosphate-Binding Pleckstrin Homology (Ph) Domain of Tandem Ph-Domain-Containing Protein 1 (Tapp1): Molecular Basis of Lipid Specificity

Thomas, C.C.Dowler, S.Deak, M.Alessi, D.R.Van Aalten, D.M.F.

(2001) Biochem J 358: 287

  • DOI: https://doi.org/10.1042/0264-6021:3580287
  • Primary Citation of Related Structures:  
    1EAZ

  • PubMed Abstract: 

    Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] and its immediate breakdown product PtdIns(3,4)P(2) function as second messengers in growth factor- and insulin-induced signalling pathways. One of the ways that these 3-phosphoinositides are known to regulate downstream signalling events is by attracting proteins that possess specific PtdIns-binding pleckstrin homology (PH) domains to the plasma membrane. Many of these proteins, such as protein kinase B, phosphoinositide-dependent kinase 1 and the dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1) interact with both PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2) with similar affinity. Recently, a new PH-domain-containing protein, termed tandem PH-domain-containing protein (TAPP) 1, was described which is the first protein reported to bind PtdIns(3,4)P(2) specifically. Here we describe the crystal structure of the PtdIns(3,4)P(2)-binding PH domain of TAPP1 at 1.4 A (1 A=0.1 nm) resolution in complex with an ordered citrate molecule. The structure is similar to the known structure of the PH domain of DAPP1 around the D-3 and D-4 inositol-phosphate-binding sites. However, a glycine residue adjacent to the D-5 inositol-phosphate-binding site in DAPP1 is substituted for a larger alanine residue in TAPP1, which also induces a conformational change in the neighbouring residues. We show that mutation of this glycine to alanine in DAPP1 converts DAPP1 into a TAPP1-like PH domain that only interacts with PtdIns(3,4)P(2), whereas the alanine to glycine mutation in TAPP1 permits the TAPP1 PH domain to interact with PtdIns(3,4,5)P(3).


  • Organizational Affiliation

    Division of Biological Chemistry and Molecular Microbiology, Wellcome Trust Biocentre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
TANDEM PH DOMAIN CONTAINING PROTEIN-1125Homo sapiensMutation(s): 0 
Membrane Entity: Yes 
UniProt & NIH Common Fund Data Resources
Find proteins for Q9HB21 (Homo sapiens)
Explore Q9HB21 
Go to UniProtKB:  Q9HB21
PHAROS:  Q9HB21
GTEx:  ENSG00000107679 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9HB21
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
CIT
Query on CIT

Download Ideal Coordinates CCD File 
B [auth A]CITRIC ACID
C6 H8 O7
KRKNYBCHXYNGOX-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.228 
  • R-Value Observed: 0.171 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 65.017α = 90
b = 102.796β = 90
c = 41.471γ = 90
Software Package:
Software NamePurpose
SHELXL-97refinement
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2002-07-11
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-12-13
    Changes: Data collection, Database references, Other, Refinement description