1JU2

Crystal structure of the hydroxynitrile lyase from almond


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.47 Å
  • R-Value Free: 0.186 
  • R-Value Work: 0.160 

wwPDB Validation   3D Report Full Report


This is version 2.1 of the entry. See complete history


Literature

The hydroxynitrile lyase from almond: a lyase that looks like an oxidoreductase.

Dreveny, I.Gruber, K.Glieder, A.Thompson, A.Kratky, C.

(2001) Structure 9: 803-815

  • DOI: https://doi.org/10.1016/s0969-2126(01)00639-6
  • Primary Citation of Related Structures:  
    1JU2

  • PubMed Abstract: 

    Cyanogenesis is a defense process of several thousand plant species. Hydroxynitrile lyase, a key enzyme of this process, cleaves a cyanohydrin into hydrocyanic acid and the corresponding aldehyde or ketone. The reverse reaction constitutes an important tool in biocatalysis. Different classes of hydroxynitrile lyases have convergently evolved from FAD-dependent oxidoreductases, alpha/beta hydrolases, and alcohol dehydrogenases. The FAD-dependent hydroxynitrile lyases (FAD-HNLs) carry a flavin cofactor whose redox properties appear to be unimportant for catalysis. We have determined the crystal structure of a 61 kDa hydroxynitrile lyase isoenzyme from Prunus amygdalus (PaHNL1) to 1.5 A resolution. Clear electron density originating from four glycosylation sites could be observed. As concerns the overall protein fold including the FAD cofactor, PaHNL1 belongs to the family of GMC oxidoreductases. The active site for the HNL reaction is probably at a very similar position as the active sites in homologous oxidases. There is strong evidence from the structure and the reaction product that FAD-dependent hydroxynitrile lyases have evolved from an aryl alcohol oxidizing precursor. Since key residues implicated in oxidoreductase activity are also present in PaHNL1, it is not obvious why this enzyme shows no oxidase activity. Similarly, features proposed to be relevant for hydroxy-nitrile lyase activity in other hydroxynitrile lyases, i.e., a general base and a positive charge to stabilize the cyanide, are not obviously present in the putative active site of PaHNL1. Therefore, the reason for its HNL activity is far from being well understood at this point.


  • Organizational Affiliation

    Institut für Chemie, Karl-Franzens-Universität, Heinrichstrasse 28, Graz A-8010, Austria.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
hydroxynitrile lyase
A, B
536Prunus dulcisMutation(s): 0 
EC: 4.1.2.10
UniProt
Find proteins for Q945K2 (Prunus dulcis)
Explore Q945K2 
Go to UniProtKB:  Q945K2
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ945K2
Glycosylation
Glycosylation Sites: 4
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
C
2N-Glycosylation
Glycosylation Resources
GlyTouCan:  G07375KG
GlyCosmos:  G07375KG
GlyGen:  G07375KG
Entity ID: 3
MoleculeChains Length2D Diagram Glycosylation3D Interactions
alpha-D-mannopyranose-(1-6)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-3)]2-acetamido-2-deoxy-beta-D-glucopyranose
D, G
5N-Glycosylation
Glycosylation Resources
GlyTouCan:  G83878UZ
GlyCosmos:  G83878UZ
GlyGen:  G83878UZ
Entity ID: 4
MoleculeChains Length2D Diagram Glycosylation3D Interactions
beta-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-3)]2-acetamido-2-deoxy-beta-D-glucopyranose
E
5N-Glycosylation
Glycosylation Resources
GlyTouCan:  G16799JU
GlyCosmos:  G16799JU
GlyGen:  G16799JU
Entity ID: 5
MoleculeChains Length2D Diagram Glycosylation3D Interactions
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
F
2N-Glycosylation
Glycosylation Resources
GlyTouCan:  G42666HT
GlyCosmos:  G42666HT
GlyGen:  G42666HT
Entity ID: 6
MoleculeChains Length2D Diagram Glycosylation3D Interactions
beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-3)]2-acetamido-2-deoxy-beta-D-glucopyranose
H
4N-Glycosylation
Glycosylation Resources
GlyTouCan:  G18638YB
GlyCosmos:  G18638YB
GlyGen:  G18638YB
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.47 Å
  • R-Value Free: 0.186 
  • R-Value Work: 0.160 
  • Space Group: P 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 56.176α = 79.57
b = 67.494β = 77.78
c = 79.796γ = 67.19
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
SOLVEphasing
CNSrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2002-09-04
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Derived calculations, Structure summary
  • Version 2.1: 2024-10-23
    Changes: Data collection, Database references, Structure summary