1L4Y

CRYSTAL STRUCTURE OF SHIKIMATE KINASE FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH MGADP AT 2.0 ANGSTROM RESOLUTION


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.252 
  • R-Value Work: 0.217 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.5 of the entry. See complete history


Literature

Crystal structure of shikimate kinase from Mycobacterium tuberculosis reveals the dynamic role of the LID domain in catalysis.

Gu, Y.Reshetnikova, L.Li, Y.Wu, Y.Yan, H.Singh, S.Ji, X.

(2002) J Mol Biol 319: 779-789

  • DOI: https://doi.org/10.1016/S0022-2836(02)00339-X
  • Primary Citation of Related Structures:  
    1L4U, 1L4Y

  • PubMed Abstract: 

    Shikimate kinase (SK) and other enzymes in the shikimate pathway are potential targets for developing non-toxic antimicrobial agents, herbicides, and anti-parasite drugs, because the pathway is essential in the above species but is absent from mammals. The crystal structure of Mycobacterium tuberculosis SK (MtSK) in complex with MgADP has been determined at 1.8 A resolution, revealing critical information for the structure-based design of novel anti-M. tuberculosis agents. MtSK, with a five-stranded parallel beta-sheet flanked by eight alpha-helices, has three domains: the CORE domain, the shikimate-binding domain (SB), and the LID domain. The ADP molecule is bound with its adenine moiety sandwiched between the side-chains of Arg110 and Pro155, its beta-phosphate group in the P-loop, and the alpha and beta-phosphate groups hydrogen bonded to the guanidinium group of Arg117. Arg117 is located in the LID domain, is strictly conserved in SK sequences, is observed for the first time to interact with any bound nucleotide, and appears to be important in both substrate binding and catalysis. The crystal structure of MtSK (this work) and that of Erwinia chrysanthemi SK suggest a concerted conformational change of the LID and SB domains upon nucleotide binding.


  • Organizational Affiliation

    Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
SHIKIMATE KINASE176Mycobacterium tuberculosisMutation(s): 0 
Gene Names: AROK
EC: 2.7.1.71
UniProt
Find proteins for P9WPY3 (Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv))
Explore P9WPY3 
Go to UniProtKB:  P9WPY3
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP9WPY3
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.252 
  • R-Value Work: 0.217 
  • Space Group: P 32 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 63.86α = 90
b = 63.86β = 90
c = 92.07γ = 120
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2002-06-12
    Type: Initial release
  • Version 1.1: 2008-04-28
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-03-29
    Changes: Refinement description
  • Version 1.4: 2023-08-16
    Changes: Data collection, Database references, Derived calculations, Refinement description
  • Version 1.5: 2023-08-30
    Changes: Database references, Structure summary