2F3B

Mechanism of displacement of a catalytically essential loop from the active site of fructose-1,6-bisphosphatase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 
    0.249 (Depositor) 
  • R-Value Work: 
    0.222 (Depositor), 0.200 (DCC) 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 

Created with Raphaël 2.3.0Worse 01 BetterLigand structure goodness of fit to experimental dataBest fitted F6PClick on this verticalbar to view details

This is version 1.7 of the entry. See complete history


Literature

Mechanism of displacement of a catalytically essential loop from the active site of mammalian fructose-1,6-bisphosphatase.

Gao, Y.Iancu, C.V.Mukind, S.Choe, J.Y.Honzatko, R.B.

(2013) Biochemistry 52: 5206-5216

  • DOI: https://doi.org/10.1021/bi400532n
  • Primary Citation of Related Structures:  
    2F3B, 2F3D, 4KXP

  • PubMed Abstract: 

    AMP triggers a 15° subunit-pair rotation in fructose-1,6-bisphosphatase (FBPase) from its active R state to its inactive T state. During this transition, a catalytically essential loop (residues 50-72) leaves its active (engaged) conformation. Here, the structures of Ile(10) → Asp FBPase and molecular dynamic simulations reveal factors responsible for loop displacement. The AMP/Mg(2+) and AMP/Zn(2+) complexes of Asp(10) FBPase are in intermediate quaternary conformations (completing 12° of the subunit-pair rotation), but the complex with Zn(2+) provides the first instance of an engaged loop in a near-T quaternary state. The 12° subunit-pair rotation generates close contacts involving the hinges (residues 50-57) and hairpin turns (residues 58-72) of the engaged loops. Additional subunit-pair rotation toward the T state would make such contacts unfavorable, presumably causing displacement of the loop. Targeted molecular dynamics simulations reveal no steric barriers to subunit-pair rotations of up to 14° followed by the displacement of the loop from the active site. Principal component analysis reveals high-amplitude motions that exacerbate steric clashes of engaged loops in the near-T state. The results of the simulations and crystal structures are in agreement: subunit-pair rotations just short of the canonical T state coupled with high-amplitude modes sterically displace the dynamic loop from the active site.


  • Organizational Affiliation

    Department of Biochemistry, Biophysics, and Molecular Biology, 4206 Molecular Biology Building, Iowa State University , Ames, Iowa 50011-3260, United States.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Fructose-1,6-bisphosphatase 1338Sus scrofaMutation(s): 1 
Gene Names: FBP1FBP
EC: 3.1.3.11
UniProt
Find proteins for P00636 (Sus scrofa)
Explore P00636 
Go to UniProtKB:  P00636
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00636
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free:  0.249 (Depositor) 
  • R-Value Work:  0.222 (Depositor), 0.200 (DCC) 
Space Group: I 2 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 52.936α = 90
b = 82.497β = 90
c = 164.955γ = 90
Software Package:
Software NamePurpose
CNSrefinement
PDB_EXTRACTdata extraction
SCALEdata reduction
SCALEPACKdata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 

Created with Raphaël 2.3.0Worse 01 BetterLigand structure goodness of fit to experimental dataBest fitted F6PClick on this verticalbar to view details

Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2006-04-25
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Derived calculations, Version format compliance
  • Version 1.3: 2013-07-24
    Changes: Database references
  • Version 1.4: 2014-02-05
    Changes: Database references
  • Version 1.5: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Data collection, Derived calculations, Structure summary
  • Version 1.6: 2021-10-20
    Changes: Database references, Structure summary
  • Version 1.7: 2024-02-14
    Changes: Data collection