Structural and functional characterization of CcmG from Pseudomonas aeruginosa, a key component of the bacterial cytochrome c maturation apparatus.
Di Matteo, A., Calosci, N., Gianni, S., Jemth, P., Brunori, M., Travaglini-Allocatelli, C.(2010) Proteins 78: 2213-2221
- PubMed: 20544959
- DOI: https://doi.org/10.1002/prot.22733
- Primary Citation of Related Structures:
3KH7, 3KH9 - PubMed Abstract:
The cytochrome c maturation process is carried out in the bacterial periplasm, where some specialized thiol-disulfide oxidoreductases work in close synergy for the correct reduction of oxidized apocytochrome before covalent heme attachment. We present a structural and functional characterization of the soluble periplasmic domain of CcmG from the opportunistic pathogen P. aeruginosa (Pa-CcmG), a component of the protein machinery involved in cyt c maturation in gram-negative bacteria. X-ray crystallography reveals that Pa-CcmG is a TRX-like protein; high-resolution crystal structures show that the oxidized and the reduced forms of the enzyme are identical except for the active-site disulfide. The standard redox potential was calculated to be E(0') = -0.213 V at pH 7.0; the pK(a) of the active site thiols were pK(a) = 6.13 +/- 0.05 for the N-terminal Cys74 and pK(a) = 10.5 +/- 0.17 for the C-terminal Cys77. Experiments were carried out to characterize and isolate the mixed disulfide complex between Pa-CcmG and Pa-CcmH (the other redox active component of System I in P. aeruginosa). Our data indicate that the target disulfide of this TRX-like protein is not the intramolecular disulfide of oxidized Pa-CcmH, but the intermolecular disulfide formed between Cys28 of Pa-CcmH and DTNB used for the in vitro experiments. This observation suggests that, in vivo, the physiological substrate of Pa-CcmG may be the mixed-disulfide complex between Pa-CcmH and apo-cyt.
Organizational Affiliation:
Dipartimento di Scienze Biochimiche, Istituto di Biologia e Patologia Molecolari del CNR, Sapienza-Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy.