A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae.
Gallego, O., Betts, M.J., Gvozdenovic-Jeremic, J., Maeda, K., Matetzki, C., Aguilar-Gurrieri, C., Beltran-Alvarez, P., Bonn, S., Fernandez-Tornero, C., Jensen, L.J., Kuhn, M., Trott, J., Rybin, V., Muller, C.W., Bork, P., Kaksonen, M., Russell, R.B., Gavin, A.C.(2010) Mol Syst Biol 6: 430-430
- PubMed: 21119626
- DOI: https://doi.org/10.1038/msb.2010.87
- Primary Citation of Related Structures:
3NSU - PubMed Abstract:
Protein-metabolite networks are central to biological systems, but are incompletely understood. Here, we report a screen to catalog protein-lipid interactions in yeast. We used arrays of 56 metabolites to measure lipid-binding fingerprints of 172 proteins, including 91 with predicted lipid-binding domains. We identified 530 protein-lipid associations, the majority of which are novel. To show the data set's biological value, we studied further several novel interactions with sphingolipids, a class of conserved bioactive lipids with an elusive mode of action. Integration of live-cell imaging suggests new cellular targets for these molecules, including several with pleckstrin homology (PH) domains. Validated interactions with Slm1, a regulator of actin polarization, show that PH domains can have unexpected lipid-binding specificities and can act as coincidence sensors for both phosphatidylinositol phosphates and phosphorylated sphingolipids.
Organizational Affiliation:
Structural and Computational Biology Unit, European Molecular Biology Laboratory, EMBL, Heidelberg, Germany.