4AWG

Influenza strain pH1N1 2009 polymerase subunit PA endonuclease in complex with diketo compound 3


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.262 
  • R-Value Work: 0.190 
  • R-Value Observed: 0.194 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.1 of the entry. See complete history


Literature

Structural Analysis of Specific Metal Chelating Inhibitor Binding to the Endonuclease Domain of Influenza Ph1N1 (2009) Polymerase.

Kowalinski, E.Zubieta, C.Wolkerstorfer, A.Szolar, O.H.Ruigrok, R.W.Cusack, S.

(2012) PLoS Pathog 8: 2831

  • DOI: https://doi.org/10.1371/journal.ppat.1002831
  • Primary Citation of Related Structures:  
    4AVG, 4AVL, 4AVQ, 4AWF, 4AWG, 4AWH, 4AWK, 4AWM

  • PubMed Abstract: 

    It is generally recognised that novel antiviral drugs, less prone to resistance, would be a desirable alternative to current drug options in order to be able to treat potentially serious influenza infections. The viral polymerase, which performs transcription and replication of the RNA genome, is an attractive target for antiviral drugs since potent polymerase inhibitors could directly stop viral replication at an early stage. Recent structural studies on functional domains of the heterotrimeric polymerase, which comprises subunits PA, PB1 and PB2, open the way to a structure based approach to optimise inhibitors of viral replication. In particular, the unique cap-snatching mechanism of viral transcription can be inhibited by targeting either the PB2 cap-binding or PA endonuclease domains. Here we describe high resolution X-ray co-crystal structures of the 2009 pandemic H1N1 (pH1N1) PA endonuclease domain with a series of specific inhibitors, including four diketo compounds and a green tea catechin, all of which chelate the two critical manganese ions in the active site of the enzyme. Comparison of the binding mode of the different compounds and that of a mononucleotide phosphate highlights, firstly, how different substituent groups on the basic metal binding scaffold can be orientated to bind in distinct sub-pockets within the active site cavity, and secondly, the plasticity of certain structural elements of the active site cavity, which result in induced fit binding. These results will be important in optimising the design of more potent inhibitors targeting the cap-snatching endonuclease activity of influenza virus polymerase.


  • Organizational Affiliation

    European Molecular Biology Laboratory, Grenoble Outstation, BP181, Grenoble, France.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
POLYMERASE PA
A, B, C, D
204Influenza A virus (A/California/04/2009(H1N1))Mutation(s): 0 
UniProt
Find proteins for C3W5S0 (Influenza A virus (strain swl A/California/04/2009 H1N1))
Go to UniProtKB:  C3W5S0
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
CI3
Query on CI3

Download Ideal Coordinates CCD File 
BA [auth D],
I [auth A],
P [auth B],
V [auth C]
(2Z)-4-[(3S)-1-benzyl-3-(4-chlorobenzyl)piperidin-3-yl]-2-hydroxy-4-oxobut-2-enoic acid
C23 H24 Cl N O4
KBXVCUKTDOSDRY-BXDIUNCMSA-N
SO4
Query on SO4

Download Ideal Coordinates CCD File 
AA [auth D]
E [auth A]
F [auth A]
G [auth A]
H [auth A]
AA [auth D],
E [auth A],
F [auth A],
G [auth A],
H [auth A],
L [auth B],
M [auth B],
N [auth B],
O [auth B],
S [auth C],
T [auth C],
U [auth C],
Y [auth D],
Z [auth D]
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
MN
Query on MN

Download Ideal Coordinates CCD File 
CA [auth D]
DA [auth D]
J [auth A]
K [auth A]
Q [auth B]
CA [auth D],
DA [auth D],
J [auth A],
K [auth A],
Q [auth B],
R [auth B],
W [auth C],
X [auth C]
MANGANESE (II) ION
Mn
WAEMQWOKJMHJLA-UHFFFAOYSA-N
Binding Affinity Annotations 
IDSourceBinding Affinity
CI3 PDBBind:  4AWG IC50: 1100 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.262 
  • R-Value Work: 0.190 
  • R-Value Observed: 0.194 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 54.57α = 90
b = 122.54β = 90
c = 129.78γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
XDSdata reduction
XSCALEdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2012-08-22
    Type: Initial release
  • Version 1.1: 2023-12-20
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description