6VUN

Reverse Transcriptase Diabody with R83C Mutation


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.167 
  • R-Value Work: 0.138 
  • R-Value Observed: 0.139 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report

Currently 6VUN does not have a validation slider image.


This is version 1.4 of the entry. See complete history


Literature

Co-crystallization with diabodies: A case study for the introduction of synthetic symmetry.

Chesterman, C.Arnold, E.

(2021) Structure 29: 598-605.e3

  • DOI: https://doi.org/10.1016/j.str.2021.02.001
  • Primary Citation of Related Structures:  
    6VRP, 6VUG, 6VUN, 6VUO, 6VUP, 7KBM, 7KBO, 7KBP

  • PubMed Abstract: 

    This work presents a method for introducing synthetic symmetry into protein crystallization samples using an antibody fragment termed a diabody (Dab). These Dabs contain two target binding sites, and engineered disulfide bonds have been included to modulate Dab flexibility. The impacts of Dab engineering have been observed through assessment of thermal stability, small-angle X-ray scattering, and high-resolution crystal structures. Complexes between the engineered Dabs and HIV-1 reverse transcriptase (RT) bound to a high-affinity DNA aptamer were also generated to explore the capacity of engineered Dabs to enable the crystallization of bound target proteins. This strategy increased the crystallization hit frequency obtained for RT-aptamer, and the structure of a Dab-RT-aptamer complex was determined to 3.0-Å resolution. Introduction of synthetic symmetry using a Dab could be a broadly applicable strategy, especially when monoclonal antibodies for a target have previously been identified.


  • Organizational Affiliation

    Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA; GSK, Rockville, MD 20850, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Single-chain Fv
A, B
236Homo sapiensMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
FLC
Query on FLC

Download Ideal Coordinates CCD File 
L [auth B]CITRATE ANION
C6 H5 O7
KRKNYBCHXYNGOX-UHFFFAOYSA-K
EDO
Query on EDO

Download Ideal Coordinates CCD File 
C [auth A]
D [auth A]
E [auth A]
F [auth A]
G [auth A]
C [auth A],
D [auth A],
E [auth A],
F [auth A],
G [auth A],
H [auth B],
I [auth B],
J [auth B],
K [auth B]
1,2-ETHANEDIOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.167 
  • R-Value Work: 0.138 
  • R-Value Observed: 0.139 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 55.089α = 90
b = 56.632β = 90
c = 161.888γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
HKL-2000data reduction
SCALEPACKdata scaling
PHASERphasing

Structure Validation

View Full Validation Report

Currently 6VUN does not have a validation slider image.



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)United StatesR37 AI027690

Revision History  (Full details and data files)

  • Version 1.0: 2021-02-17
    Type: Initial release
  • Version 1.1: 2021-03-10
    Changes: Database references
  • Version 1.2: 2021-06-16
    Changes: Database references
  • Version 1.3: 2023-10-11
    Changes: Data collection, Database references, Refinement description
  • Version 1.4: 2024-11-20
    Changes: Structure summary